Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: ARIMA Forecasting and Evaluation | Implementing ARIMA for Forecasting
Time Series Forecasting with ARIMA

bookChallenge: ARIMA Forecasting and Evaluation

Oppgave

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 6.67

bookChallenge: ARIMA Forecasting and Evaluation

Sveip for å vise menyen

Oppgave

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
single

single

some-alt