Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Visualizing Time Series Components | Foundations of Time Series Analysis
Time Series Forecasting with ARIMA

bookChallenge: Visualizing Time Series Components

Oppgave

Swipe to start coding

Your goal is to decompose a time series into its componentstrend, seasonality, and residuals — using the seasonal_decompose() function from statsmodels.

  1. Load the built-in "flights" dataset from seaborn.
  2. Extract the "passengers" column as your target time series.
  3. Apply seasonal_decompose() with an additive model and a period of 12 (months).
  4. Store the result in a variable called decomposition.
  5. Plot the original series, trend, seasonal, and residual components.

seasonal_decompose(series, model="additive", period=12) automatically splits the time series into four parts:

  • trend → long-term movement;
  • seasonal → repeating patterns;
  • resid → random noise;
  • observed → original data.

Each component can be accessed with attributes like .trend, .seasonal, .resid.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 6.67

bookChallenge: Visualizing Time Series Components

Sveip for å vise menyen

Oppgave

Swipe to start coding

Your goal is to decompose a time series into its componentstrend, seasonality, and residuals — using the seasonal_decompose() function from statsmodels.

  1. Load the built-in "flights" dataset from seaborn.
  2. Extract the "passengers" column as your target time series.
  3. Apply seasonal_decompose() with an additive model and a period of 12 (months).
  4. Store the result in a variable called decomposition.
  5. Plot the original series, trend, seasonal, and residual components.

seasonal_decompose(series, model="additive", period=12) automatically splits the time series into four parts:

  • trend → long-term movement;
  • seasonal → repeating patterns;
  • resid → random noise;
  • observed → original data.

Each component can be accessed with attributes like .trend, .seasonal, .resid.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
single

single

some-alt