Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Label Encoding of the Target Variable | Processing Categorical Data
Data Preprocessing
course content

Kursinnhold

Data Preprocessing

Data Preprocessing

1. Brief Introduction
2. Processing Quantitative Data
3. Processing Categorical Data
4. Time Series Data Processing
5. Feature Engineering
6. Moving on to Tasks

book
Label Encoding of the Target Variable

Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:

  • Methods work with different data dimensions;
  • The order of the categories is not important for label encoding.

How to use this method in Python:

1234567891011121314
from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
copy
Oppgave

Swipe to start coding

Read the dataset 'salary_and_gender.csv' and encode the output column 'Gender' with label encoding.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
toggle bottom row

book
Label Encoding of the Target Variable

Let's go straight to the main thing - label encoding implements everything the same as ordinal encoder, but:

  • Methods work with different data dimensions;
  • The order of the categories is not important for label encoding.

How to use this method in Python:

1234567891011121314
from sklearn.preprocessing import LabelEncoder import pandas as pd # Simple categorical variable fruits = pd.Series(['apple', 'orange', 'banana', 'banana', 'apple', 'orange', 'banana']) # Create label encoder object le = LabelEncoder() # Fit and transform the categorical variable using label encoding fruits_encoded = le.fit_transform(fruits) # Print the encoded values print(fruits_encoded)
copy
Oppgave

Swipe to start coding

Read the dataset 'salary_and_gender.csv' and encode the output column 'Gender' with label encoding.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 4
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt