Challenge: Random Forest
Oppgave
Swipe to start coding
Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:
- Load the dataset using
sklearn.datasets.load_iris(). - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train a RandomForestClassifier with:
n_estimators=100,max_depth=4,random_state=42.
- Predict labels on the test set.
- Compute and print the accuracy score of your model.
- Store the trained model in a variable named
rf_modeland predictions iny_pred.
Løsning
Alt var klart?
Takk for tilbakemeldingene dine!
Seksjon 2. Kapittel 4
single
Spør AI
Spør AI
Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår
Suggested prompts:
Can you explain this in simpler terms?
What are the main points I should remember?
Can you give me an example?
Fantastisk!
Completion rate forbedret til 7.14
Challenge: Random Forest
Sveip for å vise menyen
Oppgave
Swipe to start coding
Train and evaluate a Random Forest Classifier on the Iris dataset. Your task is to:
- Load the dataset using
sklearn.datasets.load_iris(). - Split the data into training and testing sets (
test_size=0.3,random_state=42). - Train a RandomForestClassifier with:
n_estimators=100,max_depth=4,random_state=42.
- Predict labels on the test set.
- Compute and print the accuracy score of your model.
- Store the trained model in a variable named
rf_modeland predictions iny_pred.
Løsning
Alt var klart?
Takk for tilbakemeldingene dine!
Seksjon 2. Kapittel 4
single