Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge 3: Relational Plots | Seaborn
Data Science Interview Challenge
course content

Kursinnhold

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 3: Relational Plots

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Oppgave

Swipe to start coding

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 3
toggle bottom row

book
Challenge 3: Relational Plots

Understanding relationships between variables is essential in data analysis. A robust way to visualize these relationships is through relational plots. Seaborn, with its intricate API, provides an array of tools to showcase how variables interact with one another.

Relational plots in Seaborn can:

  • Identify patterns, correlations, and outliers among two variables.
  • Present the relationship between multiple variables across complex datasets.
  • Delineate data over time or other common variables using hue semantics.

By delving into Seaborn's relational plots, analysts can derive insights into multivariate relationships and how they evolve across parameters.

Oppgave

Swipe to start coding

Using Seaborn, visualize the relationships in a dataset:

  1. Create a line plot to track changes in a variable over time or sequential order.
  2. Display the relationship between two numeric variables with a scatter plot and differentiate data using color semantics.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 3
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt