Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære The `iloc` Property | Fetching Data from DataFrames
Pandas: First Steps
course content

Kursinnhold

Pandas: First Steps

Pandas: First Steps

1. Getting Started
2. Basics of Dataframes
3. Fetching Data from DataFrames

book
The `iloc` Property

The iloc property in Pandas allows us to access specific parts of a DataFrame using numerical positions.

You can use iloc to access:

  • A single element;

  • A single row;

  • A single column;

  • A range of rows;

  • A range of columns;

  • A range of rows and columns.

General Syntax

js

You can also slice:

python

Example

12345678910111213141516171819202122232425
import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
copy
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 10

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

course content

Kursinnhold

Pandas: First Steps

Pandas: First Steps

1. Getting Started
2. Basics of Dataframes
3. Fetching Data from DataFrames

book
The `iloc` Property

The iloc property in Pandas allows us to access specific parts of a DataFrame using numerical positions.

You can use iloc to access:

  • A single element;

  • A single row;

  • A single column;

  • A range of rows;

  • A range of columns;

  • A range of rows and columns.

General Syntax

js

You can also slice:

python

Example

12345678910111213141516171819202122232425
import pandas as pd df = pd.DataFrame({ 'Name': ['Alice', 'Bob', 'Charlie', 'Daisy'], 'Age': [25, 30, 35, 28], 'City': ['New York', 'Paris', 'London', 'Berlin'] }) # Single element print('>> Single Element:\n', df.iloc[1, 2]) # Single row print('\n>> Single Row:\n', df.iloc[2]) # Single column print('\n>> Single Column:\n', df.iloc[:, 1]) # Range of rows print('\n>> Range of Rows:\n', df.iloc[1:3]) # Range of columns print('\n>> Range of Columns:\n', df.iloc[:, 0:2]) # Range of rows and columns print('\n>> Range of Rows & Columns:\n', df.iloc[1:3, 0:2])
copy
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 10
Vi beklager at noe gikk galt. Hva skjedde?
some-alt