Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Combined Transformations of a Vector | Linear Algebra Foundations
Mathematics for Data Science

bookChallenge: Combined Transformations of a Vector

Apply a scaling transformation and a 90° rotation to a 2D vector using Python and matrix multiplication. Visualize the result with arrows and coordinate labels from the origin.

You're working with a vector:

v=[23]\vec{v} = \begin{bmatrix}2 \\ 3\end{bmatrix}

You will:

  1. Apply a scaling matrix:

    S=[2000.5]S = \begin{bmatrix}2 & 0 \\ 0 & 0.5\end{bmatrix}
  2. Apply a rotation matrix:

    R=[23]R = \begin{bmatrix}2 \\ 3\end{bmatrix}
  3. Combine them as:

R(Sv)R \cdot (S \cdot \vec{v})

This simulates what happens when a vector is first scaled and then rotated.

Oppgave

Swipe to start coding

  1. Complete the Python code below to:

    • Define the original vector;

    • Apply the scaling and rotation matrices;

    • Plot all vectors with labeled tips and coordinate axes;

  2. Verify that the output vectors are correct.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 4. Kapittel 7
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Can you show me the Python code for these transformations and the visualization?

Can you explain step by step how the scaling and rotation matrices are applied?

What would the final transformed vector coordinates be?

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Combined Transformations of a Vector

Sveip for å vise menyen

Apply a scaling transformation and a 90° rotation to a 2D vector using Python and matrix multiplication. Visualize the result with arrows and coordinate labels from the origin.

You're working with a vector:

v=[23]\vec{v} = \begin{bmatrix}2 \\ 3\end{bmatrix}

You will:

  1. Apply a scaling matrix:

    S=[2000.5]S = \begin{bmatrix}2 & 0 \\ 0 & 0.5\end{bmatrix}
  2. Apply a rotation matrix:

    R=[23]R = \begin{bmatrix}2 \\ 3\end{bmatrix}
  3. Combine them as:

R(Sv)R \cdot (S \cdot \vec{v})

This simulates what happens when a vector is first scaled and then rotated.

Oppgave

Swipe to start coding

  1. Complete the Python code below to:

    • Define the original vector;

    • Apply the scaling and rotation matrices;

    • Plot all vectors with labeled tips and coordinate axes;

  2. Verify that the output vectors are correct.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 1.89
Seksjon 4. Kapittel 7
single

single

some-alt