Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Solving a Linear System with LU Decomposition | Linear Algebra Foundations
Mathematics for Data Science

bookChallenge: Solving a Linear System with LU Decomposition

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Oppgave

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 4. Kapittel 10
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Solving a Linear System with LU Decomposition

Sveip for å vise menyen

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Oppgave

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 1.89
Seksjon 4. Kapittel 10
single

single

some-alt