Implementing Rational Functions in Python
Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.
1. Defining the Function
We define our rational function as:
def rational_function(x):
return 1 / (x - 1)
Key Considerations:
- x=1 must be excluded from calculations to avoid division by zero;
- The function will be split into two domains (left and right of x=1).
2. Splitting the Domain
To avoid division by zero, we generate two separate sets of x-values:
x_left = np.linspace(-4, 0.99, 250) # Left of x = 1
x_right = np.linspace(1.01, 4, 250) # Right of x = 1
The values 0.99
and 1.01
ensure we never include x=1, preventing errors.
3. Plotting the Function
plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)
The function jumps at x=1, so we need to plot it in two pieces.
4. Marking Asymptotes and Intercepts
- Vertical Asymptote (x=1):
def rational_function(x):
return 1 / (x - 1)
- Horizontal Asymptote (y=0):
plt.axhline(0, color='green', linestyle='--',
linewidth=1, label="Horizontal Asymptote (y=0)")
- Y-Intercept at x=0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")
5. Adding Directional Arrows
To indicate the function extends infinitely:
plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))
1. How do you define a rational function in Python that avoids division by zero?
2. What does the following code do?
3. How do we visualize a vertical asymptote in matplotlib
?
Takk for tilbakemeldingene dine!
Spør AI
Spør AI
Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår
Can you explain why we need to split the domain for rational functions?
How do I identify vertical and horizontal asymptotes in a rational function?
What does the code do to avoid division by zero errors?
Awesome!
Completion rate improved to 1.89
Implementing Rational Functions in Python
Sveip for å vise menyen
Unlike previous functions, rational functions require special handling when visualizing them in Python. The presence of undefined points and infinite behavior means we must carefully split the domain to avoid mathematical errors.
1. Defining the Function
We define our rational function as:
def rational_function(x):
return 1 / (x - 1)
Key Considerations:
- x=1 must be excluded from calculations to avoid division by zero;
- The function will be split into two domains (left and right of x=1).
2. Splitting the Domain
To avoid division by zero, we generate two separate sets of x-values:
x_left = np.linspace(-4, 0.99, 250) # Left of x = 1
x_right = np.linspace(1.01, 4, 250) # Right of x = 1
The values 0.99
and 1.01
ensure we never include x=1, preventing errors.
3. Plotting the Function
plt.plot(x_left, y_left, color='blue', linewidth=2, label=r"$f(x) = \frac{1}{x - 1}$")
plt.plot(x_right, y_right, color='blue', linewidth=2)
The function jumps at x=1, so we need to plot it in two pieces.
4. Marking Asymptotes and Intercepts
- Vertical Asymptote (x=1):
def rational_function(x):
return 1 / (x - 1)
- Horizontal Asymptote (y=0):
plt.axhline(0, color='green', linestyle='--',
linewidth=1, label="Horizontal Asymptote (y=0)")
- Y-Intercept at x=0:
y_intercept = rational_function(0)
plt.scatter(0, y_intercept, color='purple', label="Y-Intercept")
5. Adding Directional Arrows
To indicate the function extends infinitely:
plt.annotate('', xy=(x_right[-1], y_right[-1]), xytext=(x_right[-2], y_right[-2]), arrowprops=dict(arrowstyle='->', color='blue', linewidth=1.5))
1. How do you define a rational function in Python that avoids division by zero?
2. What does the following code do?
3. How do we visualize a vertical asymptote in matplotlib
?
Takk for tilbakemeldingene dine!