Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Time Series Forecasting with LSTM | Time Series Analysis
Introduction to RNNs

Sveip for å vise menyen

book
Challenge: Time Series Forecasting with LSTM

Oppgave

Swipe to start coding

  • Define the TimeSeriesPredictor class, completing its __init__ method to set up the nn.LSTM and nn.Linear layers, and implement its forward method to process input sequences and output a prediction.

  • Instantiate the TimeSeriesPredictor model, then define the nn.MSELoss criterion and torch.optim.Adam optimizer.

  • Implement the training and evaluation loops, including forward and backward passes, parameter updates, and loss calculation.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 5
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 4.76

book
Challenge: Time Series Forecasting with LSTM

Oppgave

Swipe to start coding

  • Define the TimeSeriesPredictor class, completing its __init__ method to set up the nn.LSTM and nn.Linear layers, and implement its forward method to process input sequences and output a prediction.

  • Instantiate the TimeSeriesPredictor model, then define the nn.MSELoss criterion and torch.optim.Adam optimizer.

  • Implement the training and evaluation loops, including forward and backward passes, parameter updates, and loss calculation.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 4.76

Sveip for å vise menyen

some-alt