Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Problem C. Minimum Path in Triangle | Solutions
Dynamic Programming

bookProblem C. Minimum Path in Triangle

The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle and update values in the cells:

  • triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]: thats how you can reach cell [i, j]` with min cost
  • triangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1] : extreme cases (number of columns in each row is equal to number of row).

After updating, choose the minimum path cost, which is in the last row.

1234567891011121314151617181920
def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
copy

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 3. Kapittel 3
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 8.33

bookProblem C. Minimum Path in Triangle

Sveip for å vise menyen

The key to the solution is forming all possible minimum-cost paths from top to bottom row. You can not be sure which one will have minimum cost, so let's traverse a triangle and update values in the cells:

  • triangle[i][j] += min(triangle[i-1][j-1], triangle[i-1][j]: thats how you can reach cell [i, j]` with min cost
  • triangle[i][0] += triangle[i-1][0], triangle[i][i-1] += triangle[i-1][i-1] : extreme cases (number of columns in each row is equal to number of row).

After updating, choose the minimum path cost, which is in the last row.

1234567891011121314151617181920
def minPath(triangle): for i in range(1, len(triangle)): for j in range(i+1): small = 10000000 if j > 0: small = triangle[i-1][j-1] if j < i: small = min(small, triangle[i-1][j]) triangle[i][j] += small return min(triangle[-1]) triangle = [[90], [72, 6], [3, 61, 51], [90, 70, 23, 100], [79, 92, 72, 14, 1], [7, 97, 29, 100, 93, 93], [52, 95, 21, 36, 69, 69, 14], [33, 82, 20, 37, 79, 83, 21, 45]] print(minPath(triangle))
copy

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 8.33
Seksjon 3. Kapittel 3
single

single

some-alt