Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Problem A. Binomial Coefficient | Problems
Dynamic Programming

bookProblem A. Binomial Coefficient

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

In previous sections, we solved the problems that can be described as functions with 1 parameter (fib(n), rabbit(n)). Sometimes, the function depends on 2 or more parameters, for example, this one.

Oppgave

Swipe to start coding

Create the program to calculate Binomial coefficient C(n, k) using dynamic programming. Since the function contains two parameters, the problem requires a two-dimensional array dp[n+1][n+1] to store the values.

  1. Define the base cases: C(n,0) = C(n,n) = 1
  2. Use the rule:

C(n,k) = C(n-1,k-1) + C(n-1,k).

Use Optimal Substructure and Overlapping Subproblems principles. If you’re unsure about how to store sub-solutions, open Hint.

Example 1. n=3, k=2 -> res = 3

Example2. n=10, k=4 -> res = 210

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 1
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Oppsummer dette kapittelet

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 8.33

bookProblem A. Binomial Coefficient

Sveip for å vise menyen

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

In previous sections, we solved the problems that can be described as functions with 1 parameter (fib(n), rabbit(n)). Sometimes, the function depends on 2 or more parameters, for example, this one.

Oppgave

Swipe to start coding

Create the program to calculate Binomial coefficient C(n, k) using dynamic programming. Since the function contains two parameters, the problem requires a two-dimensional array dp[n+1][n+1] to store the values.

  1. Define the base cases: C(n,0) = C(n,n) = 1
  2. Use the rule:

C(n,k) = C(n-1,k-1) + C(n-1,k).

Use Optimal Substructure and Overlapping Subproblems principles. If you’re unsure about how to store sub-solutions, open Hint.

Example 1. n=3, k=2 -> res = 3

Example2. n=10, k=4 -> res = 210

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 8.33
Seksjon 2. Kapittel 1
single

single

some-alt