Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Problem B. Minimum path | Problems
Dynamic Programming

Sveip for å vise menyen

book
Problem B. Minimum path

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Oppgave

Swipe to start coding

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 2

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Problem B. Minimum path

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

Given a two-dimensional array mat with values in it. Each value means the price we should pay for entering it. There is frog sitting in the top-left cell who wants to move to top-right. The frog can move to the nearest cell either right or down per one move. When it enters a cell, frog has to pay mat[i][j] for visiting it. Your goal is to find a path with minimal price. Return the cost of such a path.

Example 1

The orange path is minimum and costs 25.

Example 2

Input :

[[1, 3, 4],

[2, 1, 5],

[4, 6, 7]]

Output: 16

The path looks like:

Example 3

Input:

[[1, 2, 4],

[8, 5, 1]]

Output: 8

The Optimal Substructure here is to find the minimum path for each cell based on previous ones:

mat[i][j] = mat[i][j] + min(mat[i-1][j], mat[i][j-1])

This way, the minimum path to the mat[i][j] cell includes the price of this cell and the minimum price to one of the available cells (top or left).

Oppgave

Swipe to start coding

Create an algorithm to find the shortest path for the frog.

  1. Use data structure mat[n][n] as DS for storing the cost to the cell mat[i][j].
  2. Consider that you can visit current cell mat[i][j] only from left or top cell (if it possible).
  3. The answer is the value of mat[-1][-1].

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 2
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt