Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Problem D. Coin Change | Problems
Dynamic Programming

Sveip for å vise menyen

book
Problem D. Coin Change

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

The problem is to find the possible number of ways to get N cents with coins of different denominations. Imagine you have an infinite amount of coins valued c[0], c[1], c[2], …, c[m-1] – some values (for example, coins of 1, 2, 5, and 10 cents; these values are stored to input as an array).

You can combine these coins to achieve N cents in sum. Calculate the number of possible variations.

Order does not matter, i. e. for N=10 combinations 1+2+2+5, 2+1+2+5, and 5+2+1+2 are equal.

Example 1: N = 5, coins = [1,2,5] -> 4

There are 4 ways to combine coins: 5=1+1+1+1+1, 5=1+1+1+2, 5=1+2+2, 5=5.

Example 2: N=4, coins=[1,2,3,7] -> 4

Answer is 4: 4=1+1+1+1, 4=2+2, 4=1+3, 4=1+1+2

Example 3: N=100, coins = [1,3,5,7,10] -> 6426

Oppgave

Swipe to start coding

Implement the function and call it for the given test calls.

  1. How many ways to reach the K coins if you know the number of how to reach K-c[0], K-c[1], ... , K-c[m-1] coins?
  2. What is the least sum you can change using only one coin of c[0], c[1], ..., or c[-1]?

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
Vi beklager at noe gikk galt. Hva skjedde?

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Problem D. Coin Change

The tasks in this section contain test function calls. Please do not change this code; otherwise, the assignment may not be accepted.

The problem is to find the possible number of ways to get N cents with coins of different denominations. Imagine you have an infinite amount of coins valued c[0], c[1], c[2], …, c[m-1] – some values (for example, coins of 1, 2, 5, and 10 cents; these values are stored to input as an array).

You can combine these coins to achieve N cents in sum. Calculate the number of possible variations.

Order does not matter, i. e. for N=10 combinations 1+2+2+5, 2+1+2+5, and 5+2+1+2 are equal.

Example 1: N = 5, coins = [1,2,5] -> 4

There are 4 ways to combine coins: 5=1+1+1+1+1, 5=1+1+1+2, 5=1+2+2, 5=5.

Example 2: N=4, coins=[1,2,3,7] -> 4

Answer is 4: 4=1+1+1+1, 4=2+2, 4=1+3, 4=1+1+2

Example 3: N=100, coins = [1,3,5,7,10] -> 6426

Oppgave

Swipe to start coding

Implement the function and call it for the given test calls.

  1. How many ways to reach the K coins if you know the number of how to reach K-c[0], K-c[1], ... , K-c[m-1] coins?
  2. What is the least sum you can change using only one coin of c[0], c[1], ..., or c[-1]?

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt