Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Overlapping Subproblems Property: Memoization | Intro to Dynamic Programming
Dynamic Programming

Sveip for å vise menyen

book
Overlapping Subproblems Property: Memoization

Dynamic Programming combines solutions computed for sub-problems and stores them in the memory. Dynamic Programming mainly uses solutions to the same sub-problems repeatedly, and that’s the point. It makes sense to find a solution for each problem only once and reuse it later.

For example, unlike DP problems, the Merge Sort Algorithm also solves the subproblems like we do in DP but does not use these solutions multiple times.

In our Fibonacci problem, we solve the same problems multiple times. Why? Remember the formula for fib(n) = fib(n-1) + fib(n-2)? But for fib(n-1) we'll calculate the fib(n-2) and fib(n-3), and then calculate fib(n-2) again. Since we have no solution for fib(n-2) in memory, we'll repeat the same calculations multiple times. Here's why storing solved sub-problems in some tables makes sense.

Memoization

The memoized program is similar to the previous recursive solution but with additional space for storing values; let’s call it solved. When you solve some subproblem, put the solution to solved, and reuse it next time. The Memoization principle stores values from top to down, so it is also known as the Top-Down approach in Dynamic Programming.

Oppgave

Swipe to start coding

The function fib(n, solved) fills the list solved with Fibonacci numbers starting from 0 and up to n. Can you add some logic to store the sub-solutions?

  1. Follow comments in the code.
  2. Test your program: call the function fib() for n = 12.
  3. Output the solved list like pairs of i, num to see the sub-solutions.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 2

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Overlapping Subproblems Property: Memoization

Dynamic Programming combines solutions computed for sub-problems and stores them in the memory. Dynamic Programming mainly uses solutions to the same sub-problems repeatedly, and that’s the point. It makes sense to find a solution for each problem only once and reuse it later.

For example, unlike DP problems, the Merge Sort Algorithm also solves the subproblems like we do in DP but does not use these solutions multiple times.

In our Fibonacci problem, we solve the same problems multiple times. Why? Remember the formula for fib(n) = fib(n-1) + fib(n-2)? But for fib(n-1) we'll calculate the fib(n-2) and fib(n-3), and then calculate fib(n-2) again. Since we have no solution for fib(n-2) in memory, we'll repeat the same calculations multiple times. Here's why storing solved sub-problems in some tables makes sense.

Memoization

The memoized program is similar to the previous recursive solution but with additional space for storing values; let’s call it solved. When you solve some subproblem, put the solution to solved, and reuse it next time. The Memoization principle stores values from top to down, so it is also known as the Top-Down approach in Dynamic Programming.

Oppgave

Swipe to start coding

The function fib(n, solved) fills the list solved with Fibonacci numbers starting from 0 and up to n. Can you add some logic to store the sub-solutions?

  1. Follow comments in the code.
  2. Test your program: call the function fib() for n = 12.
  3. Output the solved list like pairs of i, num to see the sub-solutions.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 2
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt