Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Overlapping Subproblems Property: Tabulation | Intro to Dynamic Programming
Dynamic Programming

Sveip for å vise menyen

book
Overlapping Subproblems Property: Tabulation

Tabulation

"First, solve all necessary subproblems, and then solve the main problem."

Such a principle is called the Bottom-Up approach. We start with trivial subproblems and move from the bottom to the answer. This principle also uses additional tables to store solutions.

Example

Let’s create an array dp to store the solutions. (dp can be a common name for data structure in a class of DP problems).

1234567891011121314
def fib(n): # Array declaration dp = [0]*(n+1) # Base case assignment dp[0] = 0 dp[1] = 1 # Calculating and storing the values for trivial cases for i in range(2 , n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
copy

Since we know how to calculate the next element using the previous two elements, let's move from the pre-defined first two elements (base case) and figure out the solution for the 3rd sub-problem. After that, solve the 4th sub-problem using the 2nd and 3rd, and so on, until the last element.

Oppgave

Swipe to start coding

Look at the following task code for the Fibonacci problem.

  1. Fix it to make the solution correct.
  2. Call the function for n = 16 and output the 16th Fibonacci number.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 3
Vi beklager at noe gikk galt. Hva skjedde?

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
Overlapping Subproblems Property: Tabulation

Tabulation

"First, solve all necessary subproblems, and then solve the main problem."

Such a principle is called the Bottom-Up approach. We start with trivial subproblems and move from the bottom to the answer. This principle also uses additional tables to store solutions.

Example

Let’s create an array dp to store the solutions. (dp can be a common name for data structure in a class of DP problems).

1234567891011121314
def fib(n): # Array declaration dp = [0]*(n+1) # Base case assignment dp[0] = 0 dp[1] = 1 # Calculating and storing the values for trivial cases for i in range(2 , n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
copy

Since we know how to calculate the next element using the previous two elements, let's move from the pre-defined first two elements (base case) and figure out the solution for the 3rd sub-problem. After that, solve the 4th sub-problem using the 2nd and 3rd, and so on, until the last element.

Oppgave

Swipe to start coding

Look at the following task code for the Fibonacci problem.

  1. Fix it to make the solution correct.
  2. Call the function for n = 16 and output the 16th Fibonacci number.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 3
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt