Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Pipe Your Data Manipulation | Pipes and Chaining Operations
Practice
Projects
Quizzes & Challenges
Quizer
Challenges
/
Data Manipulation in R (Core)

bookChallenge: Pipe Your Data Manipulation

In analytics, you often need to perform several data manipulation steps in sequence—such as selecting columns, filtering rows, creating new variables, and arranging results. Rather than writing separate commands, you can use the pipe operator '%>%' to chain these operations together, making your code cleaner and easier to follow. This approach is especially useful when cleaning and preparing data for analysis, as it allows you to express a series of transformations as a single, readable pipeline. Now, you will practice chaining multiple dplyr verbs using pipes to achieve a real-world data cleaning task.

Oppgave

Swipe to start coding

You are given an orders data frame containing order information. Your goal is to clean this data using a single pipeline with pipes and dplyr verbs.

  • Select only the columns order_id, customer, amount, and status.
  • Filter for orders where status is "Completed" and amount is greater than 100.
  • Create a new column amount_usd by multiplying amount by 1.1.
  • Arrange the resulting data in descending order of amount_usd.

Assign your final data frame to cleaned_orders.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 2
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

bookChallenge: Pipe Your Data Manipulation

Sveip for å vise menyen

In analytics, you often need to perform several data manipulation steps in sequence—such as selecting columns, filtering rows, creating new variables, and arranging results. Rather than writing separate commands, you can use the pipe operator '%>%' to chain these operations together, making your code cleaner and easier to follow. This approach is especially useful when cleaning and preparing data for analysis, as it allows you to express a series of transformations as a single, readable pipeline. Now, you will practice chaining multiple dplyr verbs using pipes to achieve a real-world data cleaning task.

Oppgave

Swipe to start coding

You are given an orders data frame containing order information. Your goal is to clean this data using a single pipeline with pipes and dplyr verbs.

  • Select only the columns order_id, customer, amount, and status.
  • Filter for orders where status is "Completed" and amount is greater than 100.
  • Create a new column amount_usd by multiplying amount by 1.1.
  • Arrange the resulting data in descending order of amount_usd.

Assign your final data frame to cleaned_orders.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 2
single

single

some-alt