Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Challenge: Mutate Customer Data | Data Manipulation with dplyr
Practice
Projects
Quizzes & Challenges
Quizer
Challenges
/
Data Manipulation in R (Core)

bookChallenge: Mutate Customer Data

Oppgave

Swipe to start coding

Practice using mutate() to add new columns for customer segmentation. Your goal is to create an age column and a segment column in the given data frame.

  • Add a new column age to the data frame, calculated as 2024 - birth_year.
  • Add a new column segment to the data frame, assigning "youth" if age is less than 25, "adult" if age is 25 or older but less than 65, and "senior" if age is 65 or older.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

bookChallenge: Mutate Customer Data

Sveip for å vise menyen

Oppgave

Swipe to start coding

Practice using mutate() to add new columns for customer segmentation. Your goal is to create an age column and a segment column in the given data frame.

  • Add a new column age to the data frame, calculated as 2024 - birth_year.
  • Add a new column segment to the data frame, assigning "youth" if age is less than 25, "adult" if age is 25 or older but less than 65, and "senior" if age is 65 or older.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 4
single

single

some-alt