Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Poisson Distribution 2/3 | Distributions
Probability Theory Update

Sveip for å vise menyen

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 2
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

close

Awesome!

Completion rate improved to 3.7

book
Poisson Distribution 2/3

As you remember, with the .pmf() function, we can calculate the probability over a range using the addition rule. Look at the example: Example 1/2: We know that per day the expected value of users is 100. Calculate the probability that 110 users will visit the app. This distribution is discrete, so to calculate the probability of getting the exact number of customers, we can use the .pmf() function with two parameters: the first is our desored number of events, and the second is lambda.

Python realization:

We will use .pmf() function for the Poisson distribution using stats.poisson.pmf().

123
import scipy.stats as stats probability = stats.poisson.pmf(110, 100) print("The probability is", probability * 100, "%")
copy

Example 2/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will equal 16, 17, 18, or 19.

Python realization:

12345678910
import scipy.stats as stats prob_1 = stats.poisson.pmf(16, 15) prob_2 = stats.poisson.pmf(17, 15) prob_3 = stats.poisson.pmf(18, 15) prob_4 = stats.poisson.pmf(19, 15) probability = prob_1 + prob_2 + prob_3 + prob_4 print("The probability is", probability * 100, "%")
copy

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 3.7

Sveip for å vise menyen

some-alt