Poisson Distribution 3/3
As you remember, with the .cdf()
function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example:
Example 1/2:
The expected value of sunny days per month is 15
. Calculate the probability that the number of sunny days will be less or equal 12
.
Python realization:
12345import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
Example 1/2:
The expected value of sunny days per month is 15
. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].
Python realization:
1234567891011import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15)
, we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15)
, we will find the probability that our variable will take a value less than or equal to 5.
Takk for tilbakemeldingene dine!
single
Spør AI
Spør AI
Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår
Oppsummer dette kapittelet
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.7
Poisson Distribution 3/3
Sveip for å vise menyen
As you remember, with the .cdf()
function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example:
Example 1/2:
The expected value of sunny days per month is 15
. Calculate the probability that the number of sunny days will be less or equal 12
.
Python realization:
12345import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
Example 1/2:
The expected value of sunny days per month is 15
. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].
Python realization:
1234567891011import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15)
, we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15)
, we will find the probability that our variable will take a value less than or equal to 5.
Takk for tilbakemeldingene dine!
Awesome!
Completion rate improved to 3.7single