Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære SimpleImputer | The Very First Steps
Introduction to Scikit Learn

bookSimpleImputer

We figured out the identification of missing values. Time now to find out what to do with them and how.

SimpleImputer - it is a class from the scikit-learn library, and which is used to work with the missing values.

SimpleImputer(). This method replaces the missing values with more logical values. It has such main arguments, let's look at them.

  • missing_values - a way to represent missing values, by default is NaN, but as we have already said, it can be for example 0.
  • strategy - here we indicate which values we will replace with. It can be mean(default), median, most_frequent and constant.
  • fill_value - a constant value, with which we will replace the missing values, if we chose strategy = constant.

We learn fit() and transform() functions a little more later.

Oppgave

Swipe to start coding

Let's try to fill the empty space in your small dataset.To use SimpleImputer you have to implement the next steps:

  1. Import the class.
  2. Create an instance of the class (imputer object).
  3. Specify the parameters you need, especially: we see that here the missing values are represented by NaN, so replace them with the constant value 15.
  4. Fit the imputer on your data using fit() function
  5. Impute all missing values in you data using transform() function.

Løsning

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 2
single

single

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

Oppsummer dette kapittelet

Explain code

Explain why doesn't solve task

close

Awesome!

Completion rate improved to 12.5

bookSimpleImputer

Sveip for å vise menyen

We figured out the identification of missing values. Time now to find out what to do with them and how.

SimpleImputer - it is a class from the scikit-learn library, and which is used to work with the missing values.

SimpleImputer(). This method replaces the missing values with more logical values. It has such main arguments, let's look at them.

  • missing_values - a way to represent missing values, by default is NaN, but as we have already said, it can be for example 0.
  • strategy - here we indicate which values we will replace with. It can be mean(default), median, most_frequent and constant.
  • fill_value - a constant value, with which we will replace the missing values, if we chose strategy = constant.

We learn fit() and transform() functions a little more later.

Oppgave

Swipe to start coding

Let's try to fill the empty space in your small dataset.To use SimpleImputer you have to implement the next steps:

  1. Import the class.
  2. Create an instance of the class (imputer object).
  3. Specify the parameters you need, especially: we see that here the missing values are represented by NaN, so replace them with the constant value 15.
  4. Fit the imputer on your data using fit() function
  5. Impute all missing values in you data using transform() function.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

close

Awesome!

Completion rate improved to 12.5
Seksjon 1. Kapittel 2
single

single

some-alt