Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Aggregating in 2-D Arrays | Introduction to NumPy
Introduction to Data Analysis in Python
course content

Kursinnhold

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 6

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

course content

Kursinnhold

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Aggregating in 2-D Arrays

All the aggregate functions learned in this section can be used along either columns, or rows. To do it, you need to specify the axis parameter within aggregate function.

For example, we can compute the sum of rows and columns elements separately.

1234567
# Import the library import numpy as np # Creating array arr = np.array([[5.2, 3.0, 4.5], [9.1, 0.1, 0.3]]) # Sum of rows and columns elements print(arr.sum(axis = 0)) # columns print(arr.sum(axis = 1)) # rows
copy

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 6
Vi beklager at noe gikk galt. Hva skjedde?
some-alt