Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Arrays Operations | Introduction to NumPy
Introduction to Data Analysis in Python
course content

Kursinnhold

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Arrays Operations

NumPy arrays not only perform faster, but also support different operations, that are not available for built-in lists.

For example, you can add/subtract/multiply/divide by a certain number all the array elements. Or you can multiply two arrays element-by-element.

123456789
# Import the library import numpy as np # Creating two arrays arr1 = np.array([1, 2, 3]) arr2 = np.array([10, 20, 30]) # Perform some arrays operations print(arr1 + 3) print(arr1 * arr2)
copy

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 3

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

course content

Kursinnhold

Introduction to Data Analysis in Python

Introduction to Data Analysis in Python

1. Basics
2. Data Types
3. Control Flow
4. Functions and Modules
5. Introduction to NumPy

book
Arrays Operations

NumPy arrays not only perform faster, but also support different operations, that are not available for built-in lists.

For example, you can add/subtract/multiply/divide by a certain number all the array elements. Or you can multiply two arrays element-by-element.

123456789
# Import the library import numpy as np # Creating two arrays arr1 = np.array([1, 2, 3]) arr2 = np.array([10, 20, 30]) # Perform some arrays operations print(arr1 + 3) print(arr1 * arr2)
copy

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 3
Vi beklager at noe gikk galt. Hva skjedde?
some-alt