Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Aggregate Functions | Introduction to NumPy
Introduction to Data Analysis in Python

bookAggregate Functions

You can also calculate aggregate statistics of NumPy arrays, like minimum, maximum, mean, product, sum, etc. These ase realized in NumPy as arrays methods.

MethodDescription
.mean()Returns the arithmetic mean
.sum()Returns the sum of elements
.prod()Returns the product of all elements
.min()Returns the minimum of an array
.max()Returns the maximum of an array
.std()Returns the standard deviation of array elements
.var()Returns the variance of array elements

For example, assume we have two arrays: prices and sales, representing goods' prices and quantity of each good being sold, respectively. Using multiplication and .sum() method we can easily calculate the total revenue.

12345678910
# Import the library import numpy as np # Two arrays prices = np.array([15, 60, 40, 5]) sales = np.array([7, 3, 5, 15]) # Revenue per good rev_per_good = prices * sales # Total revenue print("Total revenue is", rev_per_good.sum())
copy

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 4

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Awesome!

Completion rate improved to 2.7

bookAggregate Functions

Sveip for å vise menyen

You can also calculate aggregate statistics of NumPy arrays, like minimum, maximum, mean, product, sum, etc. These ase realized in NumPy as arrays methods.

MethodDescription
.mean()Returns the arithmetic mean
.sum()Returns the sum of elements
.prod()Returns the product of all elements
.min()Returns the minimum of an array
.max()Returns the maximum of an array
.std()Returns the standard deviation of array elements
.var()Returns the variance of array elements

For example, assume we have two arrays: prices and sales, representing goods' prices and quantity of each good being sold, respectively. Using multiplication and .sum() method we can easily calculate the total revenue.

12345678910
# Import the library import numpy as np # Two arrays prices = np.array([15, 60, 40, 5]) sales = np.array([7, 3, 5, 15]) # Revenue per good rev_per_good = prices * sales # Total revenue print("Total revenue is", rev_per_good.sum())
copy

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 4
some-alt