Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Why RAG Exists | Foundations of Retrieval-Augmented Generation
Practice
Projects
Quizzes & Challenges
Quizzes
Challenges
/
RAG Theory Essentials

bookWhy RAG Exists

Large language models (LLMs) are powerful tools for generating text, answering questions, and supporting a wide range of applications. However, they sometimes produce text that sounds plausible but is actually false or misleading. This issue is known as the hallucination problem. Hallucinations can lead to incorrect information being presented with high confidence, which is especially problematic in settings where accuracy and reliability are critical. Understanding why hallucinations happen is essential for developing more trustworthy AI systems.

Note
Definition

Parametric memory refers to the information stored within the parameters of a language model during training. LLMs learn to encode vast amounts of knowledge in their weights, but this memory is limited in several ways: it cannot be updated after training, may not cover recent events, and struggles to recall specific facts not well represented in the training data.

To address these limitations, researchers have developed retrieval-augmented generation (RAG) approaches. The main motivation for RAG is to improve the factual accuracy, relevance, and timeliness of generated outputs. By combining the generative power of LLMs with the ability to retrieve information from external sources, RAG systems can ground their responses in up-to-date and verifiable knowledge. This reduces hallucinations, enables access to information beyond the model's training data, and supports applications that require current or specialized knowledge.

question mark

Which statements best describe the hallucination problem in large language models and how retrieval-augmented generation (RAG) addresses it?

Select the correct answer

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 1

Spør AI

expand

Spør AI

ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

Suggested prompts:

What are some examples of hallucinations in LLMs?

How does retrieval-augmented generation (RAG) actually work?

What are the main challenges in implementing RAG systems?

bookWhy RAG Exists

Sveip for å vise menyen

Large language models (LLMs) are powerful tools for generating text, answering questions, and supporting a wide range of applications. However, they sometimes produce text that sounds plausible but is actually false or misleading. This issue is known as the hallucination problem. Hallucinations can lead to incorrect information being presented with high confidence, which is especially problematic in settings where accuracy and reliability are critical. Understanding why hallucinations happen is essential for developing more trustworthy AI systems.

Note
Definition

Parametric memory refers to the information stored within the parameters of a language model during training. LLMs learn to encode vast amounts of knowledge in their weights, but this memory is limited in several ways: it cannot be updated after training, may not cover recent events, and struggles to recall specific facts not well represented in the training data.

To address these limitations, researchers have developed retrieval-augmented generation (RAG) approaches. The main motivation for RAG is to improve the factual accuracy, relevance, and timeliness of generated outputs. By combining the generative power of LLMs with the ability to retrieve information from external sources, RAG systems can ground their responses in up-to-date and verifiable knowledge. This reduces hallucinations, enables access to information beyond the model's training data, and supports applications that require current or specialized knowledge.

question mark

Which statements best describe the hallucination problem in large language models and how retrieval-augmented generation (RAG) addresses it?

Select the correct answer

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 1. Kapittel 1
some-alt