Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære Implementing on Real Dataset | DBSCAN
Cluster Analysis
course content

Kursinnhold

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 5

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

course content

Kursinnhold

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
Implementing on Real Dataset

You'll use the mall customers dataset, which contains the following columns:

You should also follow these steps before clustering:

  1. Load the data: you'll use pandas to load the CSV file;

  2. Select relevant features: you'll focus on 'Annual Income (k$)' and 'Spending Score (1-100)' columns;

  3. Data scaling (important for DBSCAN): since DBSCAN uses distance calculations, it's crucial to scale features to have similar ranges. You can use StandardScaler for this purpose.

Interpretation

The code creates 5 clusters in this case. It's important to analyze the resulting clusters to gain insights into customer segmentation. For example, you might find clusters representing:

  • High-income, high-spending customers;

  • High-income, low-spending customers;

  • Low-income, high-spending customers;

  • Low-income, low-spending customers;

  • Middle-income, middle-spending customers.

Concluding Remarks

Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 5. Kapittel 5
Vi beklager at noe gikk galt. Hva skjedde?
some-alt