Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære K-Medoids and the Weather Data | K-Medoids Algorithm
Cluster Analysis in Python

Sveip for å vise menyen

book
K-Medoids and the Weather Data

As you can see, there was no such clear peek as in the example. That means that both 3 and 4 clusters may be a good choice!

Let's see what will be the result of using the K-Medoids algorithm for the weather data we used in the previous section. Let's start with defining the optimal number of clusters.

Oppgave

Swipe to start coding

Given cities' average temperatures dataset data. The numerical columns are 3 - 14. Table

Your tasks are:

  1. Using for loop iterate over n_cl. Within the loop:
  • Create KMedoids model with j clusters named model.
  • Fit the 2-15 columns of data to the model. Watch out that indices in Python start from 0.
  • Add silhouette score value to the silhouettes list. Remember to pass two parameters: the data used for fitting (the same 3-15 columns) and predicted by model labels.
  1. Visualize the results using lineplot of sns. Pass n_cl as x parameter and silhouettes as y. Do not forget to apply the .show() method to display the plot.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4

Spør AI

expand
ChatGPT

Spør om hva du vil, eller prøv ett av de foreslåtte spørsmålene for å starte chatten vår

book
K-Medoids and the Weather Data

As you can see, there was no such clear peek as in the example. That means that both 3 and 4 clusters may be a good choice!

Let's see what will be the result of using the K-Medoids algorithm for the weather data we used in the previous section. Let's start with defining the optimal number of clusters.

Oppgave

Swipe to start coding

Given cities' average temperatures dataset data. The numerical columns are 3 - 14. Table

Your tasks are:

  1. Using for loop iterate over n_cl. Within the loop:
  • Create KMedoids model with j clusters named model.
  • Fit the 2-15 columns of data to the model. Watch out that indices in Python start from 0.
  • Add silhouette score value to the silhouettes list. Remember to pass two parameters: the data used for fitting (the same 3-15 columns) and predicted by model labels.
  1. Visualize the results using lineplot of sns. Pass n_cl as x parameter and silhouettes as y. Do not forget to apply the .show() method to display the plot.

Løsning

Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Alt var klart?

Hvordan kan vi forbedre det?

Takk for tilbakemeldingene dine!

Seksjon 2. Kapittel 4
Switch to desktopBytt til skrivebordet for virkelighetspraksisFortsett der du er med et av alternativene nedenfor
Vi beklager at noe gikk galt. Hva skjedde?
some-alt