Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Grouping in pandas [1/2] | Grouping Data
Data Manipulation using pandas

bookGrouping in pandas [1/2]

To perform grouping in pandas, apply the .groupby() method to dataframe, with the column that will determine the groups passed as the parameter.

Note that grouping itself doesn't change the dataframe. Grouping always should come in pair with some aggregation.

For example, our dataframe has the 'morgh' column, representing if the dwelling is mortgaged or not (1 - Yes, 2 - No, 0 - House is being rented). Let's count number of household within each of possible groups (by applying the .size() method).

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data5.csv') # Grouping and aggregating data print(df.groupby('morgh').size())
copy

As you can see, 248 people are currently renting a house, while among 771 owners 365 have mortgages.

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 2

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Mi faccia domande su questo argomento

Riassuma questo capitolo

Mostri esempi dal mondo reale

Awesome!

Completion rate improved to 2.56

bookGrouping in pandas [1/2]

Scorri per mostrare il menu

To perform grouping in pandas, apply the .groupby() method to dataframe, with the column that will determine the groups passed as the parameter.

Note that grouping itself doesn't change the dataframe. Grouping always should come in pair with some aggregation.

For example, our dataframe has the 'morgh' column, representing if the dwelling is mortgaged or not (1 - Yes, 2 - No, 0 - House is being rented). Let's count number of household within each of possible groups (by applying the .size() method).

12345678
# Importing the library import pandas as pd # Reading the file df = pd.read_csv('https://codefinity-content-media.s3.eu-west-1.amazonaws.com/f2947b09-5f0d-4ad9-992f-ec0b87cd4b3f/data5.csv') # Grouping and aggregating data print(df.groupby('morgh').size())
copy

As you can see, 248 people are currently renting a house, while among 771 owners 365 have mortgages.

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 2
some-alt