Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Fourier Transform | Image Processing with OpenCV
Computer Vision Essentials

Scorri per mostrare il menu

book
Fourier Transform

It allows us to transform an image from the spatial domain (where pixel values are represented directly) to the frequency domain (where we analyze patterns and structures based on their frequency). This is useful for tasks like image filtering, edge detection, and noise reduction.

First, we need to convert the image to grayscale:

To compute the 2D Fourier transform:

Here, fft2() converts the image from the spatial domain to the frequency domain, and fftshift() moves low-frequency components to the center.

To visualize the magnitude spectrum:

Since Fourier transform outputs complex numbers, we take the absolute values (np.abs()) for a meaningful visualization.

The np.log function enhances visibility, as raw magnitude values vary greatly in scale.

Compito

Swipe to start coding

You are given an image:

  • Convert image to grayscale and store in gray_image variable;
  • Apply Fourier transform to the gray_image and stote in dft variable;
  • Make zero frequency shift to center and store the result in dft_shift variable;
  • Calculate a magnitude spectrum and store in magnitude_spectrum variable.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 2
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Fourier Transform

It allows us to transform an image from the spatial domain (where pixel values are represented directly) to the frequency domain (where we analyze patterns and structures based on their frequency). This is useful for tasks like image filtering, edge detection, and noise reduction.

First, we need to convert the image to grayscale:

To compute the 2D Fourier transform:

Here, fft2() converts the image from the spatial domain to the frequency domain, and fftshift() moves low-frequency components to the center.

To visualize the magnitude spectrum:

Since Fourier transform outputs complex numbers, we take the absolute values (np.abs()) for a meaningful visualization.

The np.log function enhances visibility, as raw magnitude values vary greatly in scale.

Compito

Swipe to start coding

You are given an image:

  • Convert image to grayscale and store in gray_image variable;
  • Apply Fourier transform to the gray_image and stote in dft variable;
  • Make zero frequency shift to center and store the result in dft_shift variable;
  • Calculate a magnitude spectrum and store in magnitude_spectrum variable.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 2
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt