Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: ARIMA Forecasting and Evaluation | Implementing ARIMA for Forecasting
Time Series Forecasting with ARIMA

bookChallenge: ARIMA Forecasting and Evaluation

Compito

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the main takeaways from this?

Can you give me an example?

close

Awesome!

Completion rate improved to 6.67

bookChallenge: ARIMA Forecasting and Evaluation

Scorri per mostrare il menu

Compito

Swipe to start coding

You will build, forecast, and evaluate an ARIMA model using the built-in AirPassengers dataset.

Perform the following steps:

  1. Load the dataset flights from seaborn and extract the "passengers" series as a time series indexed by month.

  2. Split the data into:

    • Training set → all data except the last 12 months
    • Testing set → last 12 months
  3. Fit an ARIMA(2,1,2) model on the training set using statsmodels.tsa.arima.model.ARIMA.

  4. Forecast the next 12 months.

  5. Compute and print the following metrics between the forecast and the actual test values:

    • Mean Absolute Error (MAE)
    • Root Mean Squared Error (RMSE)
  6. Plot:

    • The original series
    • The forecasted values over the test range.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 4
single

single

some-alt