Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: TF-IDF | Basic Text Models
Introduction to NLP

Scorri per mostrare il menu

book
Challenge: TF-IDF

Compito

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 8
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 3.45

book
Challenge: TF-IDF

Compito

Swipe to start coding

You have a text corpus stored in corpus variable. Your task is to display the vector for the 'medical' unigram in a TF-IDF model with unigrams, bigrams, and trigrams. To do this:

  1. Import the TfidfVectorizer class to create a TF-IDF model.
  2. Instantiate the TfidfVectorizer class as tfidf_vectorizer and configure it to include unigrams, bigrams, and trigrams.
  3. Use the appropriate method of tfidf_vectorizer to generate a TF-IDF matrix from the 'Document' column in the corpus and store the result in tfidf_matrix.
  4. Convert tfidf_matrix to a dense array and create a DataFrame from it, setting the unique features (terms) as its columns. Store the result in the tfidf_matrix_df variable.
  5. Display the vector for 'medical' as an array.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 3.45

Scorri per mostrare il menu

some-alt