Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Changing the Data Type | Brief Introduction
Data Preprocessing

Scorri per mostrare il menu

book
Changing the Data Type

You already know how to change the data type from string to number, for example. But let's take a closer look at this small but important task.

Let's start by changing the data type from string to datetime. Most often, you will need this to work with time series. You can perform this operation using the .to_datetime() method:

To convert a string to a bool - use the .map() method on the column whose values you want to change:

For example, if you have a price column that looks like "$198,800" and you want to turn it into a float - you should create custom transformation functions:

12345678910111213
import pandas as pd import re # Create simple dataset df = pd.DataFrame(data={'Price':['$4,122.94', '$1,002.3']}) # Create a custom function to transform data # x - value from column def price2int(x): return float(re.sub(r'[\$\,]', '', x)) # Use custom transformation on a column df['Price'] = df['Price'].apply(price2int)
copy
Compito

Swipe to start coding

Read the sales_data_types.csv dataset and change the data type in the Active column from str to bool.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 5
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 3.33

book
Changing the Data Type

You already know how to change the data type from string to number, for example. But let's take a closer look at this small but important task.

Let's start by changing the data type from string to datetime. Most often, you will need this to work with time series. You can perform this operation using the .to_datetime() method:

To convert a string to a bool - use the .map() method on the column whose values you want to change:

For example, if you have a price column that looks like "$198,800" and you want to turn it into a float - you should create custom transformation functions:

12345678910111213
import pandas as pd import re # Create simple dataset df = pd.DataFrame(data={'Price':['$4,122.94', '$1,002.3']}) # Create a custom function to transform data # x - value from column def price2int(x): return float(re.sub(r'[\$\,]', '', x)) # Use custom transformation on a column df['Price'] = df['Price'].apply(price2int)
copy
Compito

Swipe to start coding

Read the sales_data_types.csv dataset and change the data type in the Active column from str to bool.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 3.33

Scorri per mostrare il menu

some-alt