Bagging and Bootstrap Sampling
Bagging, short for bootstrap aggregation, is an ensemble technique that builds multiple models—most commonly decision trees—by training each model on a different random sample of the data. These samples are drawn with replacement, a process known as bootstrap sampling.
Bootstrap sampling is a statistical method where samples are drawn from the dataset with replacement, allowing the same data point to appear multiple times in a sample.
Decision tree is a tree-structured model used for classification or regression, where each internal node splits the data based on a feature.
By averaging the predictions of these models, bagging reduces variance and increases stability, particularly for high-variance models such as DecisionTreeClassifier. This averaging effect means that while individual models might overfit to their specific bootstrap samples, their combined output is more robust and less sensitive to the quirks of any single sample.
Grazie per i tuoi commenti!
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Can you explain what "with replacement" means in this context?
Why does bagging work particularly well with high-variance models?
Can you give an example of how bagging is used in practice?
Fantastico!
Completion tasso migliorato a 7.14
Bagging and Bootstrap Sampling
Scorri per mostrare il menu
Bagging, short for bootstrap aggregation, is an ensemble technique that builds multiple models—most commonly decision trees—by training each model on a different random sample of the data. These samples are drawn with replacement, a process known as bootstrap sampling.
Bootstrap sampling is a statistical method where samples are drawn from the dataset with replacement, allowing the same data point to appear multiple times in a sample.
Decision tree is a tree-structured model used for classification or regression, where each internal node splits the data based on a feature.
By averaging the predictions of these models, bagging reduces variance and increases stability, particularly for high-variance models such as DecisionTreeClassifier. This averaging effect means that while individual models might overfit to their specific bootstrap samples, their combined output is more robust and less sensitive to the quirks of any single sample.
Grazie per i tuoi commenti!