Reading and Visualizing Data
The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.
In the files, let's say you have a Date column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas function to_datetime()
Let's take the dataset air_quality_no2_long.csv as an example:
dataset = pd.read_csv("daily-total-female-births.csv")
Next, we convert the data type in the Date column from str to datetime:
dataset["Date"] = pd.to_datetime(dataset["Date"])
You can also do this immediately when reading the dataset:
dataset = pd.read_csv("daily-total-female-births.csv", parse_dates=["Date"])
Now we can plot our dataset:
fig, ax = plt.subplots(figsize=(11, 9))
ax.plot(dataset["Date"], dataset["Births"])
ax.set_xlabel("Datetime")
ax.set_ylabel("Births")
plt.show()
Swipe to start coding
Read and visualize the AirPassengers.csv dataset.
- Import
matplotlib.pyplotasplt. - Read the
csvfile and save it within thedatavariable. - Convert
"Month"intodatetimetype. - Initialize a line plot with the
"Month"column ofdataon the x-axis and"#Passengers"on the y-axis. - Set labels on an axis and display the plot:
"Month"on the x-axis;"Passengers"on the y-axis.
Soluzione
Grazie per i tuoi commenti!
single
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Riassuma questo capitolo
Explain code
Explain why doesn't solve task
Awesome!
Completion rate improved to 3.85
Reading and Visualizing Data
Scorri per mostrare il menu
The first thing to start with is reading the data. When working with time series, the rules of the game do not change - you can still use pandas to get data from csv files.
In the files, let's say you have a Date column that contains dates in str type. For further time series analysis, you must turn the str type into a datetime. This is implemented using the pandas function to_datetime()
Let's take the dataset air_quality_no2_long.csv as an example:
dataset = pd.read_csv("daily-total-female-births.csv")
Next, we convert the data type in the Date column from str to datetime:
dataset["Date"] = pd.to_datetime(dataset["Date"])
You can also do this immediately when reading the dataset:
dataset = pd.read_csv("daily-total-female-births.csv", parse_dates=["Date"])
Now we can plot our dataset:
fig, ax = plt.subplots(figsize=(11, 9))
ax.plot(dataset["Date"], dataset["Births"])
ax.set_xlabel("Datetime")
ax.set_ylabel("Births")
plt.show()
Swipe to start coding
Read and visualize the AirPassengers.csv dataset.
- Import
matplotlib.pyplotasplt. - Read the
csvfile and save it within thedatavariable. - Convert
"Month"intodatetimetype. - Initialize a line plot with the
"Month"column ofdataon the x-axis and"#Passengers"on the y-axis. - Set labels on an axis and display the plot:
"Month"on the x-axis;"Passengers"on the y-axis.
Soluzione
Grazie per i tuoi commenti!
single