Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge 1: List Comprehension | Python
Data Science Interview Challenge
course content

Contenuti del Corso

Data Science Interview Challenge

Data Science Interview Challenge

1. Python
2. NumPy
3. Pandas
4. Matplotlib
5. Seaborn
6. Statistics
7. Scikit-learn

book
Challenge 1: List Comprehension

List comprehensions in Python provide an elegant and concise way to create lists. Their advantages are:

  • Readability and conciseness: List comprehensions allow you to reduce the amount of code, making it more readable and concise. Instead of using multiple lines of code with loops and conditional statements, you can get the same result in one line.
  • Performance: In many cases, list comprehensions are faster than traditional loops, especially when processing large amounts of data, which is key in Data Science.
  • Built-in filtering capabilities: These allow you to easily apply conditional expressions to filter data, which is especially useful when preprocessing and cleaning datasets.

Thus, list comprehensions are a powerful tool in the hands of a data scientist, allowing you to quickly and efficiently process and transform data.

Compito

Swipe to start coding

Given a list of numbers, write a Python function to square all even numbers in the list. List [1, 2, 3, 4, 5] should result into [4, 16].

List Comprehention

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 2
toggle bottom row

book
Challenge 1: List Comprehension

List comprehensions in Python provide an elegant and concise way to create lists. Their advantages are:

  • Readability and conciseness: List comprehensions allow you to reduce the amount of code, making it more readable and concise. Instead of using multiple lines of code with loops and conditional statements, you can get the same result in one line.
  • Performance: In many cases, list comprehensions are faster than traditional loops, especially when processing large amounts of data, which is key in Data Science.
  • Built-in filtering capabilities: These allow you to easily apply conditional expressions to filter data, which is especially useful when preprocessing and cleaning datasets.

Thus, list comprehensions are a powerful tool in the hands of a data scientist, allowing you to quickly and efficiently process and transform data.

Compito

Swipe to start coding

Given a list of numbers, write a Python function to square all even numbers in the list. List [1, 2, 3, 4, 5] should result into [4, 16].

List Comprehention

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 2
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt