Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Predicting Savings Growth | Sets and Series
Mathematics for Data Science

bookChallenge: Predicting Savings Growth

Compito

Swipe to start coding

A financial advisor helps his clients predict their future savings based on monthly deposits and interest rates. You are given the savings growth function, modeled as a geometric series:

A=P(1+rn)ntA = P \left( 1 + \frac{r}{n} \right)^{nt}

Where:

  • AA - total amount after interest;
  • PP - principle (Initial deposit);
  • rr - annual interest rate;
  • nn - number of times interest compounds annually;
  • tt - time in years.

  1. Calculate the total savings after 20 years, given the following:
    • Initial deposit P=10000P = 10000;
    • Interest rate r=8%r = 8 \% (0.08 as decimal);
    • Compounded monthly n=12n = 12;
    • Time 20 years t=20t = 20.
  2. Determine how much interest contributes to the total savings.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 2. Capitolo 6
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you explain this in simpler terms?

What are the main points I should remember?

Can you give me an example?

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Predicting Savings Growth

Scorri per mostrare il menu

Compito

Swipe to start coding

A financial advisor helps his clients predict their future savings based on monthly deposits and interest rates. You are given the savings growth function, modeled as a geometric series:

A=P(1+rn)ntA = P \left( 1 + \frac{r}{n} \right)^{nt}

Where:

  • AA - total amount after interest;
  • PP - principle (Initial deposit);
  • rr - annual interest rate;
  • nn - number of times interest compounds annually;
  • tt - time in years.

  1. Calculate the total savings after 20 years, given the following:
    • Initial deposit P=10000P = 10000;
    • Interest rate r=8%r = 8 \% (0.08 as decimal);
    • Compounded monthly n=12n = 12;
    • Time 20 years t=20t = 20.
  2. Determine how much interest contributes to the total savings.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 1.89
Sezione 2. Capitolo 6
single

single

some-alt