Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Combined Transformations of a Vector | Linear Algebra Foundations
Mathematics for Data Science

bookChallenge: Combined Transformations of a Vector

Apply a scaling transformation and a 90° rotation to a 2D vector using Python and matrix multiplication. Visualize the result with arrows and coordinate labels from the origin.

You're working with a vector:

v=[23]\vec{v} = \begin{bmatrix}2 \\ 3\end{bmatrix}

You will:

  1. Apply a scaling matrix:

    S=[2000.5]S = \begin{bmatrix}2 & 0 \\ 0 & 0.5\end{bmatrix}
  2. Apply a rotation matrix:

    R=[23]R = \begin{bmatrix}2 \\ 3\end{bmatrix}
  3. Combine them as:

R(Sv)R \cdot (S \cdot \vec{v})

This simulates what happens when a vector is first scaled and then rotated.

Compito

Swipe to start coding

  1. Complete the Python code below to:

    • Define the original vector;

    • Apply the scaling and rotation matrices;

    • Plot all vectors with labeled tips and coordinate axes;

  2. Verify that the output vectors are correct.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 7
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you show me the Python code for these transformations and the visualization?

Can you explain step by step how the scaling and rotation matrices are applied?

What would the final transformed vector coordinates be?

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Combined Transformations of a Vector

Scorri per mostrare il menu

Apply a scaling transformation and a 90° rotation to a 2D vector using Python and matrix multiplication. Visualize the result with arrows and coordinate labels from the origin.

You're working with a vector:

v=[23]\vec{v} = \begin{bmatrix}2 \\ 3\end{bmatrix}

You will:

  1. Apply a scaling matrix:

    S=[2000.5]S = \begin{bmatrix}2 & 0 \\ 0 & 0.5\end{bmatrix}
  2. Apply a rotation matrix:

    R=[23]R = \begin{bmatrix}2 \\ 3\end{bmatrix}
  3. Combine them as:

R(Sv)R \cdot (S \cdot \vec{v})

This simulates what happens when a vector is first scaled and then rotated.

Compito

Swipe to start coding

  1. Complete the Python code below to:

    • Define the original vector;

    • Apply the scaling and rotation matrices;

    • Plot all vectors with labeled tips and coordinate axes;

  2. Verify that the output vectors are correct.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 1.89
Sezione 4. Capitolo 7
single

single

some-alt