Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Challenge: Solving a Linear System with LU Decomposition | Linear Algebra Foundations
Mathematics for Data Science

bookChallenge: Solving a Linear System with LU Decomposition

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Compito

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 4. Capitolo 10
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

Suggested prompts:

Can you show me how to perform LU decomposition step by step?

How do I use forward and backward substitution after LU decomposition?

How can I compare my solution with numpy's built-in solver?

close

Awesome!

Completion rate improved to 1.89

bookChallenge: Solving a Linear System with LU Decomposition

Scorri per mostrare il menu

A student is given a small system of linear equations representing the balance of flows in a simple network.

The system is expressed as:

Ax=bA \vec{x} = \vec{b}

Where:

  • AA is a 3×33×3 matrix;
  • b\vec{b} is the vector of known quantities.

The student's goal is to solve for x\vec{x} by performing LU decomposition on matrix AA, then using forward and backward substitution to find the solution.

Compare your solution with numpy's built-in solver to verify correctness.

Compito

Swipe to start coding

Complete the Python code below to implement LU decomposition and solve the system step-by-step:

  1. Fill in the missing code for the LU factorization of AA.
  2. Implement forward substitution to solve Ly=bL\vec{y} = \vec{b}.
  3. Implement backward substitution to solve Ux=yU\vec{x} = \vec{y}.
  4. Compare your solution with np.linalg.solve().

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 1.89
Sezione 4. Capitolo 10
single

single

some-alt