Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Grouping Numeric Data | Section
Essential R Programming for Absolute Beginners - 1768563985826

bookGrouping Numeric Data

Continuous numeric data can be transformed into categories using the cut() function. This is helpful when you want to analyze ranges rather than individual values.

Function Overview

The cut() function divides numbers into intervals and returns a factor:

cut(x, breaks, labels = NULL, right = TRUE, ordered_result = FALSE)
  • x: numeric vector to categorize;
  • breaks: number of intervals or specific cut points;
  • labels: names for categories;
  • right: whether intervals are closed on the right;
  • ordered_result: whether the categories should be ordered.

Example

12345678910
heights <- c(170, 165, 195, 172, 189, 156, 178, 198, 157, 182, 171, 184, 163, 176, 169, 153) # Split heights into 3 groups heights_f <- cut(heights, breaks = c(0, 160, 190, 250), labels = c('short', 'medium', 'tall'), ordered_result = TRUE) heights_f
copy

As a result:

  • The data is divided into three intervals: (0,160], (160,190], and (190,250];
  • They are labeled as 'short', 'medium', and 'tall';
  • The categories follow a natural order.
Compito

Swipe to start coding

You have a vector of numerical grades. Here's how to categorize them as factor levels:

  • [0, 60) - 'F';
  • [60, 75) - 'D';
  • [75, 85) - 'C';
  • [85, 95) - 'B';
  • [95, 100) - 'A'.

Your task is to:

  1. Create a variable called grades_f that categorizes the grades using the cut() function. Use the following parameters:
    • breaks - c(0, 60, 75, 85, 95, 100);
    • labels - c('F', 'D', 'C', 'B', 'A');
    • ordered_result - TRUE (to order the factor values);
    • right - FALSE (to include the left boundary of an interval, not the right).
  2. Output the contents of grades_f.

Soluzione

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 25
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

bookGrouping Numeric Data

Scorri per mostrare il menu

Continuous numeric data can be transformed into categories using the cut() function. This is helpful when you want to analyze ranges rather than individual values.

Function Overview

The cut() function divides numbers into intervals and returns a factor:

cut(x, breaks, labels = NULL, right = TRUE, ordered_result = FALSE)
  • x: numeric vector to categorize;
  • breaks: number of intervals or specific cut points;
  • labels: names for categories;
  • right: whether intervals are closed on the right;
  • ordered_result: whether the categories should be ordered.

Example

12345678910
heights <- c(170, 165, 195, 172, 189, 156, 178, 198, 157, 182, 171, 184, 163, 176, 169, 153) # Split heights into 3 groups heights_f <- cut(heights, breaks = c(0, 160, 190, 250), labels = c('short', 'medium', 'tall'), ordered_result = TRUE) heights_f
copy

As a result:

  • The data is divided into three intervals: (0,160], (160,190], and (190,250];
  • They are labeled as 'short', 'medium', and 'tall';
  • The categories follow a natural order.
Compito

Swipe to start coding

You have a vector of numerical grades. Here's how to categorize them as factor levels:

  • [0, 60) - 'F';
  • [60, 75) - 'D';
  • [75, 85) - 'C';
  • [85, 95) - 'B';
  • [95, 100) - 'A'.

Your task is to:

  1. Create a variable called grades_f that categorizes the grades using the cut() function. Use the following parameters:
    • breaks - c(0, 60, 75, 85, 95, 100);
    • labels - c('F', 'D', 'C', 'B', 'A');
    • ordered_result - TRUE (to order the factor values);
    • right - FALSE (to include the left boundary of an interval, not the right).
  2. Output the contents of grades_f.

Soluzione

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 25
single

single

some-alt