Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Indexes and Values | Basics
Introduction to pandas [track]
course content

Contenuti del Corso

Introduction to pandas [track]

Introduction to pandas [track]

1. Basics
2. Reading and Exploring Data
3. Accessing DataFrame Values
4. Aggregate Functions

book
Indexes and Values

Series in pandas differ from numpy arrays in that they have indexes. These can be integers, floating-point numbers, strings, time series.

To get the series' indexes, use the .index attribute of a series object. To get values, use the values attribute. By default, indexes are integers starting from 0, but if you want to change them, you simply may reassign new list of indexes to the .index attribute. For instance,

12345678910111213
# Importing library import pandas as pd # Creating pandas series ser = pd.Series([1000, 2500, 1700]) # Getting series' indexes and values print(ser.index) print(ser.values) print(ser) # Changing series' indexes ser.index = ['first', 'second', 'third'] print(ser)
copy

As you can see, initial indexes were 0, 1, 2. After changing, they became 'first', 'second', 'third'.

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 3

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

course content

Contenuti del Corso

Introduction to pandas [track]

Introduction to pandas [track]

1. Basics
2. Reading and Exploring Data
3. Accessing DataFrame Values
4. Aggregate Functions

book
Indexes and Values

Series in pandas differ from numpy arrays in that they have indexes. These can be integers, floating-point numbers, strings, time series.

To get the series' indexes, use the .index attribute of a series object. To get values, use the values attribute. By default, indexes are integers starting from 0, but if you want to change them, you simply may reassign new list of indexes to the .index attribute. For instance,

12345678910111213
# Importing library import pandas as pd # Creating pandas series ser = pd.Series([1000, 2500, 1700]) # Getting series' indexes and values print(ser.index) print(ser.values) print(ser) # Changing series' indexes ser.index = ['first', 'second', 'third'] print(ser)
copy

As you can see, initial indexes were 0, 1, 2. After changing, they became 'first', 'second', 'third'.

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 3
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt