Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Filtering the DataFrame | Pandas
Unveiling the Power of Data Manipulation with Pandas
course content

Contenuti del Corso

Unveiling the Power of Data Manipulation with Pandas

book
Filtering the DataFrame

Filtering a pandas DataFrame refers to selecting rows based on a specific condition. You can filter a DataFrame using the [] operator with conditions inside, such as df[df['column'] > value], or the .query() method, like df.query('column > value').

For example, suppose you have a DataFrame df with columns "Name", "Age", and "Gender", and you want to select all rows where the values of the "Age" column are greater than 30. You can use the following code to filter the DataFrame:

# Filter the DataFrame using 
# the [] operator
df_filtered = df[df["Age"] > 30]

# Filter the DataFrame using 
# the .query() method
df_filtered = df.query("Age > 30")

You can also use the "&" (logical and) and "|" (logical or) operators to combine multiple conditions.

Compito

Swipe to start coding

  1. Filter the data DataFrame using multiple conditions (use the logical and operator to combine them):
    • The value of the 'MANAGER_ID' column is greater than 100.
    • The value of the 'LOCATION_ID' column is equal to 1700.

Soluzione

Mark tasks as Completed
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 4

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

course content

Contenuti del Corso

Unveiling the Power of Data Manipulation with Pandas

book
Filtering the DataFrame

Filtering a pandas DataFrame refers to selecting rows based on a specific condition. You can filter a DataFrame using the [] operator with conditions inside, such as df[df['column'] > value], or the .query() method, like df.query('column > value').

For example, suppose you have a DataFrame df with columns "Name", "Age", and "Gender", and you want to select all rows where the values of the "Age" column are greater than 30. You can use the following code to filter the DataFrame:

# Filter the DataFrame using 
# the [] operator
df_filtered = df[df["Age"] > 30]

# Filter the DataFrame using 
# the .query() method
df_filtered = df.query("Age > 30")

You can also use the "&" (logical and) and "|" (logical or) operators to combine multiple conditions.

Compito

Swipe to start coding

  1. Filter the data DataFrame using multiple conditions (use the logical and operator to combine them):
    • The value of the 'MANAGER_ID' column is greater than 100.
    • The value of the 'LOCATION_ID' column is equal to 1700.

Soluzione

Mark tasks as Completed
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 1. Capitolo 4
some-alt