Problem A. Binomial Coefficient
Let's use the Memoization principle here. Let dp[i][j] be a Binomial Coefficient C(i,j). First, dp initialized with None.
Given dp[n][k]:
- if it is None, calculate it as
c(n-1, k-1) + c(n-1, k) - if it is a base case:
k==0 or k==n, thendp[n][k] = 1 - else return
dp[n][k]
Note that structure dp depends on n, and you must use it for defined n.
123456789101112131415n = 200 dp = [[None for _ in range(n+1)] for _ in range(n+1)] def c(n, k): if k==0 or k==n: dp[n][k] = 1 if dp[n][k] == None: dp[n][k] = c(n-1, k)+c(n-1, k-1) return dp[n][k] print(c(3, 2)) print(c(10, 4)) print(c(11, 5)) print(c(144, 7))
Tutto è chiaro?
Grazie per i tuoi commenti!
Sezione 3. Capitolo 1
single
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Suggested prompts:
Riassuma questo capitolo
Explain code
Explain why doesn't solve task
Fantastico!
Completion tasso migliorato a 8.33
Problem A. Binomial Coefficient
Scorri per mostrare il menu
Let's use the Memoization principle here. Let dp[i][j] be a Binomial Coefficient C(i,j). First, dp initialized with None.
Given dp[n][k]:
- if it is None, calculate it as
c(n-1, k-1) + c(n-1, k) - if it is a base case:
k==0 or k==n, thendp[n][k] = 1 - else return
dp[n][k]
Note that structure dp depends on n, and you must use it for defined n.
123456789101112131415n = 200 dp = [[None for _ in range(n+1)] for _ in range(n+1)] def c(n, k): if k==0 or k==n: dp[n][k] = 1 if dp[n][k] == None: dp[n][k] = c(n-1, k)+c(n-1, k-1) return dp[n][k] print(c(3, 2)) print(c(10, 4)) print(c(11, 5)) print(c(144, 7))
Tutto è chiaro?
Grazie per i tuoi commenti!
Sezione 3. Capitolo 1
single