Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Problem B. Minimum path | Solutions
Dynamic Programming

Scorri per mostrare il menu

book
Problem B. Minimum path

Let's traverse mat and update values in it: now mat[i][j] contains the path cost to cell [i, j]. How to reach that? You can get to the mat[i][j] from either mat[i-1][j] or mat[i][j-1] cell, that also contain the path cost to themselves. Thus, mat[i][j] can be updated as:

mat[i][j] += min(mat[i-1][j], mat[i][j-1]),

since you choose the minumum cost path between these two.

Note that some cells can be reached only from left or right, for example, mat[0][j] (only from mat[0][j-1]).

So, the goal is to traverse mat and update its values; after that, return path cost at mat[-1][-1].

123456789101112131415161718
def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
copy

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 2
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

book
Problem B. Minimum path

Let's traverse mat and update values in it: now mat[i][j] contains the path cost to cell [i, j]. How to reach that? You can get to the mat[i][j] from either mat[i-1][j] or mat[i][j-1] cell, that also contain the path cost to themselves. Thus, mat[i][j] can be updated as:

mat[i][j] += min(mat[i-1][j], mat[i][j-1]),

since you choose the minumum cost path between these two.

Note that some cells can be reached only from left or right, for example, mat[0][j] (only from mat[0][j-1]).

So, the goal is to traverse mat and update its values; after that, return path cost at mat[-1][-1].

123456789101112131415161718
def minPath(mat): m, n = len(mat), len(mat[0]) for i in range(1, m): mat[i][0] += mat[i-1][0] for j in range(1, n): mat[0][j] += mat[0][j-1] for i in range(1, m): for j in range(1, n): mat[i][j] += min(mat[i-1][j], mat[i][j-1]) return mat[-1][-1] mat = [[10,1,23,4,5,1], [2,13,20,9,1,5], [14,3,3,6,12,7]] print(minPath(mat))
copy

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 2
Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt