Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Poisson Distribution 1/3 | Distributions
Probability Theory Update

Scorri per mostrare il menu

book
Poisson Distribution 1/3

What is it?

This distribution describes the probability that events occur in a fixed interval of time or space if they happen with a known constant mean rate and independently.

Examples:

  • Website visitors per month.

  • The number of meteors that will fall per hour.

  • The number of people die because of specific diseases.

Lambda in Poisson distribution:

Lambda is the key parameter of the distribution that represents its expected value. It can be defined as a mean number of events within a specified time or space.

Example with lambda:

Lambda represents the expected value; if our expected value of customers visiting the app per day is 10000, then the lambda, in this case, equals 10000.

123456789
import scipy.stats as stats import matplotlib.pyplot as plt import seaborn as sns # Simulating Poisson distribution data = stats.poisson.rvs(1000, size = 1000) sns.histplot(data = data) plt.show()
copy
  • .rvs() - function that is used to create a random distribution. The first argument is lambda and the second is the size of the sample. - .poisson - referring to the poisson object to work with Poisson distribution.

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 5. Capitolo 1
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 3.7

book
Poisson Distribution 1/3

What is it?

This distribution describes the probability that events occur in a fixed interval of time or space if they happen with a known constant mean rate and independently.

Examples:

  • Website visitors per month.

  • The number of meteors that will fall per hour.

  • The number of people die because of specific diseases.

Lambda in Poisson distribution:

Lambda is the key parameter of the distribution that represents its expected value. It can be defined as a mean number of events within a specified time or space.

Example with lambda:

Lambda represents the expected value; if our expected value of customers visiting the app per day is 10000, then the lambda, in this case, equals 10000.

123456789
import scipy.stats as stats import matplotlib.pyplot as plt import seaborn as sns # Simulating Poisson distribution data = stats.poisson.rvs(1000, size = 1000) sns.histplot(data = data) plt.show()
copy
  • .rvs() - function that is used to create a random distribution. The first argument is lambda and the second is the size of the sample. - .poisson - referring to the poisson object to work with Poisson distribution.

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 3.7

Scorri per mostrare il menu

some-alt