Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Poisson Distribution 3/3 | Distributions
Probability Theory Update

Scorri per mostrare il menu

book
Poisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 5. Capitolo 3
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 3.7

book
Poisson Distribution 3/3

As you remember, with the .cdf() function, we can calculate the probability that the random variable will take a value less then or equal a defined number. Look at the example: Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less or equal 12.

Python realization:

12345
import scipy.stats as stats probability = stats.poisson.cdf(12, 15) print("The probability is", probability * 100, "%")
copy

Example 1/2:

The expected value of sunny days per month is 15. Calculate the probability that the number of sunny days will be less equal the number within the range from 5 to 11 (5; 11].

Python realization:

1234567891011
import scipy.stats as stats prob_1 = stats.poisson.cdf(11, 15) prob_2 = stats.poisson.cdf(5, 15) probability = prob_1 - prob_2 print("The probability is", probability * 100, "%")
copy

When we subtract the second expression from the first, we leave the interval from 11 to 5 exclusive. Thus, using this calculation stats.poisson.cdf(11, 15), we will find the probability that our variable will take a value less than 11. And using this calculation stats.poisson.cdf(5, 15), we will find the probability that our variable will take a value less than or equal to 5.

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 3.7

Scorri per mostrare il menu

some-alt