Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Standard Normal Distribution (Gaussian distribution) 1/2 | Distributions
Probability Theory Update

Scorri per mostrare il menu

book
Standard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.

  • The standard deviation to 1.

  • The shape is bell-curved.

  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 5. Capitolo 4
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 3.7

book
Standard Normal Distribution (Gaussian distribution) 1/2

What is it?

This is a continuous probability distribution for a real-valued random variable.

Key characteristics:

  • The mean value or expectation is equal to 0.

  • The standard deviation to 1.

  • The shape is bell-curved.

  • The distribution is symmetrical. Python realization:

We will generate standard normal distribution with the size 1000 and mean and standard deviation specific to the standard normal distribution. We use the function random.normal() from the numpy library with the parameters: loc is the mean value and scale is the standard deviation.

You can play with the distribution size and see how the distribution will be modified.

123456789
import numpy as np import matplotlib.pyplot as plt import seaborn as sns # Generate standard normal distribution with the size 1000 data = np.random.normal(loc = 0, scale = 1, size = 1000) sns.histplot(data = data, kde = True) plt.show()
copy

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 3.7

Scorri per mostrare il menu

some-alt