Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Lære MaxAbsScaler | Scaling Numerical Data
Introduction to Scikit Learn

Stryg for at vise menuen

book
MaxAbsScaler

To bring values into range [-1, 1] we have to use the next formula:

Here we have the following values:

  • x_scaled - normalized feature element,

  • x - unnormalized feature element,

  • max(x) -- maximum feature element.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

1
from sklearn.preprocessing import MaxAbsScaler
copy

Let's look at an example of how we apply this normalization to a very simple array.

12345678910
from sklearn.preprocessing import MaxAbsScaler data = [[10, 5, -6],[11, -9, 4],[-10, 0, 1]] # Normalizer initialization scaler = MaxAbsScaler() # Dataset transfer and transformation scaler.fit(data) scaled_data = scaler.transform(data) print('Data before normalization', data) print('Data after normalization', scaled_data)
copy

If you run this code you will get two different arrays: before and after normalization. And this function really works, because you can make sure that data after using MaxAbsScaler() function really lie within an interval [-1, 1]. Look below.v

It's time to practice!

Opgave

Swipe to start coding

You have a numpy array. Please, normalize this array into range [-1, 1].

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 2

Spørg AI

expand
ChatGPT

Spørg om hvad som helst eller prøv et af de foreslåede spørgsmål for at starte vores chat

book
MaxAbsScaler

To bring values into range [-1, 1] we have to use the next formula:

Here we have the following values:

  • x_scaled - normalized feature element,

  • x - unnormalized feature element,

  • max(x) -- maximum feature element.

There is a function in the sklearn library that normalizes data according to the formula given above: MaxAbsScaler(). In order to work with this function, it must first be imported in such a way:

1
from sklearn.preprocessing import MaxAbsScaler
copy

Let's look at an example of how we apply this normalization to a very simple array.

12345678910
from sklearn.preprocessing import MaxAbsScaler data = [[10, 5, -6],[11, -9, 4],[-10, 0, 1]] # Normalizer initialization scaler = MaxAbsScaler() # Dataset transfer and transformation scaler.fit(data) scaled_data = scaler.transform(data) print('Data before normalization', data) print('Data after normalization', scaled_data)
copy

If you run this code you will get two different arrays: before and after normalization. And this function really works, because you can make sure that data after using MaxAbsScaler() function really lie within an interval [-1, 1]. Look below.v

It's time to practice!

Opgave

Swipe to start coding

You have a numpy array. Please, normalize this array into range [-1, 1].

Løsning

Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Var alt klart?

Hvordan kan vi forbedre det?

Tak for dine kommentarer!

Sektion 2. Kapitel 2
Switch to desktopSkift til skrivebord for at øve i den virkelige verdenFortsæt der, hvor du er, med en af nedenstående muligheder
Vi beklager, at noget gik galt. Hvad skete der?
some-alt