Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara Preparation | Greedy on Graphs
Greedy Algorithms using Python

bookPreparation

This chapter is dedicated to different approaches to find minimum-weighted paths on graphs. We work with oriented weighted graphs here.

To solve problems, we’ll use a pre-implemented class Graph defined with an adjacency matrix, since each edge has some weight that will be stored in the matrix.

1234567891011121314151617
class Graph: def __init__(self, vertices=0): # init graph with this number of vertices self.g = [[0 for _ in range(vertices)] for _ in range(vertices)] def addEdge(self, u, v, w, o = False): # u - start vertex, v - end vertex, w - weight of edge, o - is it oriented self.g[u][v] = w if not o: self.g[v][u] = w def __str__(self): out = "" for row in self.g: out += str(row) + ' ' return out
copy

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 1
single

single

Chieda ad AI

expand

Chieda ad AI

ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

close

Awesome!

Completion rate improved to 7.69

bookPreparation

Scorri per mostrare il menu

This chapter is dedicated to different approaches to find minimum-weighted paths on graphs. We work with oriented weighted graphs here.

To solve problems, we’ll use a pre-implemented class Graph defined with an adjacency matrix, since each edge has some weight that will be stored in the matrix.

1234567891011121314151617
class Graph: def __init__(self, vertices=0): # init graph with this number of vertices self.g = [[0 for _ in range(vertices)] for _ in range(vertices)] def addEdge(self, u, v, w, o = False): # u - start vertex, v - end vertex, w - weight of edge, o - is it oriented self.g[u][v] = w if not o: self.g[v][u] = w def __str__(self): out = "" for row in self.g: out += str(row) + ' ' return out
copy

Switch to desktopCambia al desktop per esercitarti nel mondo realeContinua da dove ti trovi utilizzando una delle opzioni seguenti
Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

close

Awesome!

Completion rate improved to 7.69
Sezione 3. Capitolo 1
single

single

some-alt