Notice: This page requires JavaScript to function properly.
Please enable JavaScript in your browser settings or update your browser.
Impara What is K-Means Clustering? | K-Means
Cluster Analysis
course content

Contenuti del Corso

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
What is K-Means Clustering?

Among clustering algorithms, K-means is a widely popular and effective method. It partitions data into K distinct clusters, where K is a pre-defined number.

The goal of K-means is to minimize distances within clusters and maximize distances between clusters. This creates internally similar and externally distinct groups. K-means has numerous applications, such as:

  • Customer segmentation: grouping customers for targeted marketing;

  • Document clustering: organizing documents by topic;

  • Image segmentation: dividing images for object recognition;

  • Anomaly detection: identifying unusual data points.

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 1

Chieda ad AI

expand
ChatGPT

Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione

course content

Contenuti del Corso

Cluster Analysis

Cluster Analysis

1. Clustering Fundamentals
2. Core Concepts
3. K-Means
4. Hierarchical Clustering
5. DBSCAN
6. GMMs

book
What is K-Means Clustering?

Among clustering algorithms, K-means is a widely popular and effective method. It partitions data into K distinct clusters, where K is a pre-defined number.

The goal of K-means is to minimize distances within clusters and maximize distances between clusters. This creates internally similar and externally distinct groups. K-means has numerous applications, such as:

  • Customer segmentation: grouping customers for targeted marketing;

  • Document clustering: organizing documents by topic;

  • Image segmentation: dividing images for object recognition;

  • Anomaly detection: identifying unusual data points.

Tutto è chiaro?

Come possiamo migliorarlo?

Grazie per i tuoi commenti!

Sezione 3. Capitolo 1
Siamo spiacenti che qualcosa sia andato storto. Cosa è successo?
some-alt