Simple Solution for Scraping
The library pandas provide a quick and convenient solution for converting HTML tables to the DataFrame. The function read_html() can be useful for scraping tables from various websites without figuring out how to get the website’s HTML. You can use read_html() to work with tables whose structure is not complicated, for example, tables on Wikipedia pages.
12import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida')
In the code above, the function read_html() got all tables from Wiki about Florida. table is a list of all the tables on the page already converted to DataFrames.
With a large number of tables on the page, it can be challenging to find the one you need. To make the table selection easier, use the match parameter to select the table you want. For example:
12import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida', match='State University System of Florida')
Swipe to start coding
Get the table from the Wikipedia page about Florida and convert it to the DataFrame.
- Import
pandaslibrary with thepdalias. - Get the table 'Largest cities or towns in Florida' from the page.
- Print the DataFrame df.
Soluzione
Grazie per i tuoi commenti!
single
Chieda ad AI
Chieda ad AI
Chieda pure quello che desidera o provi una delle domande suggerite per iniziare la nostra conversazione
Fantastico!
Completion tasso migliorato a 4.76
Simple Solution for Scraping
Scorri per mostrare il menu
The library pandas provide a quick and convenient solution for converting HTML tables to the DataFrame. The function read_html() can be useful for scraping tables from various websites without figuring out how to get the website’s HTML. You can use read_html() to work with tables whose structure is not complicated, for example, tables on Wikipedia pages.
12import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida')
In the code above, the function read_html() got all tables from Wiki about Florida. table is a list of all the tables on the page already converted to DataFrames.
With a large number of tables on the page, it can be challenging to find the one you need. To make the table selection easier, use the match parameter to select the table you want. For example:
12import pandas as pd tables = pd.read_html('https://en.wikipedia.org/wiki/Florida', match='State University System of Florida')
Swipe to start coding
Get the table from the Wikipedia page about Florida and convert it to the DataFrame.
- Import
pandaslibrary with thepdalias. - Get the table 'Largest cities or towns in Florida' from the page.
- Print the DataFrame df.
Soluzione
Grazie per i tuoi commenti!
single